In Proceedings of VERIFY’06, The Third International Verification Workshop
(Seattle, WA, August 15-16, 2006).

Establishing High Confidence in Code
Implementations of Algorithms using Formal
Verification of Pseudocode *

Myla Archer Elizabeth I. Leonard

Code 5546, Naval Research Laboratory
Washington, DC 20375
{archer,leonard}@itd.nrl.navy.mil

Abstract. Using a theorem prover to establish that a body of code cor-
rectly implements an algorithm is a task seldom undertaken because the
effort required tends to be prohibitive. Direct reasoning about code in a
particular programming language requires that some version of the lan-
guage’s semantics—e.g., axiomatic, operational, denotational—be used
to determine the program correctness assertions to establish with the
theorem prover. Any scheme for generating correctness assertions will
be language-specific, and for languages with complex constructs, can be
complex to implement and use. Direct reasoning about algorithms us-
ing a theorem prover can be not just difficult, but impossible, if the
algorithms are (as is typical) specified using informal pseudocode. This
paper outlines a scheme that falls short of full program verification yet
provides high confidence in the correctness of an algorithm’s implemen-
tation. The scheme uses formal pseudocode specifications, in a restricted
language of while programs with (possibly recursive) procedure calls, to
bridge from algorithm specifications to implementations in code. Each
block of formal pseudocode is verified in the theorem prover PVS by
translating it into a state machine model and proving a set of state in-
variants. High confidence in implementation correctness is achieved by
combining verification of the pseudocode with traceability arguments re-
lating the algorithm specification to the pseudocode representation and
the pseudocode representation to the actual code.

1 Introduction

The use of a theorem prover to directly establish properties of code, particu-
larly the functional correctness of the code, is rare because of the level of effort
required. This level of effort can be reduced using appropriate tool support; how-
ever, the tool support must be based on a formal semantics for the programming
language. Many existing tools rely on the use of axiomatic semantics, but tool
support can also be based on other forms of definition such as operational or
denotational. However, any tool for code verification must be language-specific,
so a special tool or set of tools is required for each language. Further, correctly
implementing tool support for reasoning about complex language constructs can
be a difficult task.

An alternative to verifying code directly is to verify the algorithm it im-
plements. Verifying correctness of the algorithm can provide evidence for the

* This research is funded by ONR.



correctness of the code provided there is a solid argument that the algorithm
captures the code behavior. Unfortunately, direct reasoning about algorithms
using a theorem prover can be impossible, if the algorithms are represented,
as is typical, using informal pseudocode. Algorithms represented using informal
pseudocode may, for example, use natural language descriptions of the results of
operations or values to be returned. Though the intention is clear, one cannot
reason directly about the algorithms with a mechanical theorem prover from
informal representations. Thus, if this approach is taken, what is needed is a
“formal” pseudocode representation for algorithms.

The above approach to establishing functional code correctness can also be
turned around: start with an algorithm specification in (possibly informal) pseu-
docode. Then, translate the algorithms to formal pseudocode, verify the formal
pseudocode, and finally, implement the pseudocode using the code constructs
in the target programming language. In this paper, we describe how we are ap-
plying just such a process to create high confidence code. In cooperation with
one colleague providing algorithm specifications and another colleague trans-
lating formal pseudocode into code in the programming languages C [13] and
Ruby [17], we are providing and verifying the formal pseudocode tying specifica-
tion to code, and establishing the correspondences between 1) formal pseudocode
and specification and 2) between formal pseudocode and actual code.

Our verification of the formal pseudocode is based on a translation scheme
that transforms a block of formal pseudocode annotated with assertions into a
state machine representation and a set of invariant lemmas in PVS [15]. The state
machine representation uses the automaton template of the TAME (Timed Au-
tomata Modeling Environment) [2, 3] interface to PVS; this permits the TAME
support for proving state invariant properties of automata to be used in verifying
the assertions in the formal pseudocode.

The contributions described in this paper include 1) a relatively inexpen-
sive programming-language-independent method, based on verification of formal
pseudocode, for providing high confidence that a program implements an infor-
mally specified algorithm; 2) an automatable translation scheme for transforming
a set of related blocks of formal pseudocode with assertions into state machine
specifications and candidate state invariants in PVS; and 3) tool support based
on TAME for interactively proving the candidate invariants in PVS. The for-
mal pseudocode serves as a bridge from algorithm to program. The TAME tool
support allows the code annotations the candidate invariants to be weaker than
would be required in a Floyd/Hoare-style verification. When they are weaker,
the process of using TAME to create mechanized proofs of can lead to the dis-
covery of needed “strengthening lemmas”, i.e., auxiliary invariant lemmas that,
if established, can be appealed to to complete the proofs of the candidate invari-
ants. We have built a prototype translator, and have demonstrated the use of our
translation and proof techniques, including discovery and proof of strengthening
lemmas, on representative examples of asserted formal pseudocode.

This paper is organized as follows: Section 2 discusses the relationship of our
work to the work of other authors. Section 3 begins by describing our language
of formal pseudocode, and then describes how we represent formal pseudocode
in TAME, and how the TAME proof support is used in proving properties of



the TAME model. Section 4 provides details of how we use formal pseudocode
as a bridge from algorithm specifications to code. Section 5 provides examples
of algorithms, their formal pseudocode representation, TAME models of formal
pseudocode, and TAME proofs of properties. Finally, Section 6 provides obser-
vations on our results so far, and Section 7 presents our conclusions.

2 Comparison to Related Work

The work of Boyer and Moore in [7] is similar to ours in that it describes a method
for verifying programs annotated with Floyd style assertions. In contrast to our
method, which verifies formal pseudocode, verification in [7] is applied directly to
programs in a real programming language, namely, a large subset of FORTRAN.
Rather than representing a FORTRAN program as a state machine, however,
the method in [7] divides the flow graph of the program into a set of simple
paths and then directly generates verification conditions for each path from
annotations at the endpoints of the path. An example is given of implementation
of an algorithm (see [6]) in (informal) pseudocode directly in FORTRAN, and
of the generation of verification conditions formulated as suitable input for the
Boyer-Moore theorem prover Nqthm. Thus, as in our method, traceability from
algorithm to program is done offline. An intermediate formal pseudocode layer
is not required because the tool support is designed specifically for FORTRAN.

Another effort similar to ours is the Praxis effort described in [5]. The Praxis
method also documents traceability from algorithm (design) to program. The
traceability information relies on similarity of structure between code and Z [16]
specifications accompanied by explanatory text and diagrams; thus, as in our
approach, it is semi-formal. Like the method of [7], the Praxis method requires
that implementations be done in a specific programming language—in this case,
SPARK Ada—as the support tools are built for SPARK Ada.

Many other efforts, such as those described in [8,1,10-12], specify the se-
mantics of a programming language in a theorem prover, and then prove or
derive Hoare style rules for reasoning about programs in the language. The the-
orem provers used include HOL [9], which was used in [8,1,10,11], and PVS and
Isabelle [14], which were both used in [12]. The language semantics is defined by
various means: [8] uses a relational semantics of command expressions, [1] rep-
resents commands by predicate transformers, [10] and [11] use an operational
semantics based on command syntax, and [12] uses a type theory based deno-
tational semantics on command expressions. By contrast, we do not specify the
semantics of our formal pseudocode language in PVS. Rather, the PVS repre-
sentation of a program is as one or more state machines, and a translation tool
external to the prover computes the state machine representations. At present,
the correctness of our translation scheme has to rely on a pencil and paper proof.

In the methods of [7,5,8,1,10-12], correctness of progras is established by
proving a set of verification conditions. The verification conditions for [5] derive
from a standard semantics for the SPARK Ada subset of Ada and are proved
using the SPARK Ada specific theorem prover SPADE. In [8] and [1], HOL tac-
tics are used to generate the verification conditions. In [10,11], a verification
condition generator is defined in terms of HOL objects, and proved correct in



HOL. In [12], verification is done either directly from the denotational semantics
of Java or indirectly using the derived Hoare style logic. Correctness is proved
either by establishing invariant lemmas (“class invariants”) or by proving veri-
fication conditions based on the Hoare style logic, and the user evidently must
formulate the invariants and verification conditions by hand. In our approach, we
must currently supply Floyd style inductive assertions by hand. We restrict our
formal pseudocode language so that every program in our language is comprised
of a set of blocks, each block serving as a procedure definition and ending in a
RETURN statement. In each block, every line after an initial set of declarations
is labeled, and each label has an associated assertion. In addition to assertions
associated with its labels, each block is annotated with a precondition and a
postcondition. The verification conditions of a block are lemmas stating that 1)
the assertion at L% holds whenever the program label is L% and the precondition
is satisfied, and 2) at the last label, the precondition implies the postcondition.
A verification condition generator based on Hoare logic can potentially minimize
the set of labels for which a user of our method must supply an assertion. The
method of [7] follows such an approach.

Most of [7, 5, 8,1, 10-12] note that the proofs of verification conditions require
user guidance, and at least ([1]) investigates techniques for simplifying the user
effort required in proofs. In [7], the proofs are (implicitly) done mechanically
using Ngthm, which provides for inductive reasoning and can prove many asser-
tions automatically. However, Nqthm sometimes needs user guidance in the form
of auxiliary lemmas and proof hints. Our method simplifies the required user ef-
fort by incorporating the support for proofs of invariants provided in TAME.
If it proves desirable, we may extend the TAME support by defining new PVS
strategies specialized for state machine representations of programs.

Additional related efforts are discussed in the survey [4], which distinguishes
them with respect to whether they use a deep embedding or a shallow embedding
of the programming language in a theorem prover. In the conclusion of [4], the
authors define the notion of a hybrid embedding in which there is an additional
layer between the user and the theorem prover that performs the embedding.
The additional layer is viewed as being an interface between a host logic and
a guest logic. Our approach to reasoning about formal pseudocode programs
in PVS seems closest to use of a hybrid embedding in which the programs are
represented operationally as state machines.

3 Formal Pseudocode and Its Verification

To simplify our terminology, in the sequel we will refer to informal pseudocode
as ip-code and formal pseudocode as fp-code. Like the language of the Sunrise
Verification System [11], our fp-code language is an extension of the language
of “while programs” that includes procedure calls. Our method of verifying fp-
code is built on a translation scheme for representing asserted fp-code as a set
of state machine models accompanied by a set of state invariants that capture
the assertions. By representing the models using the automaton template of
the PVS interface TAME[2, 3], we are able to use TAME'’s strategy support for
verifying state invariants of automata to verify the assertions. We first describe
programs in our fp-code language. Next, we describe how blocks of fp-code are



represented as state machines in TAME, and how annotations are translated
into invariants and invariant lemmas in TAME. Finally, we will describe how
the TAME strategies can be used in proving the invariant lemmas.

3.1 Formal Pseudocode

An fp-code program consists of a set of basic blocks. Each basic block in fp-code
is formulated as a procedure definition that follows certain conventions. Proce-
dures will have two kinds of parameters: VAR and value parameters. The body of a
procedure definition is a “while program” with (optional) constant and variable
declarations and procedure calls. If present, the constant and variable decla-
rations will precede the program statements in the procedure body. The body
ends with its (unique) RETURN statement. By convention, every VAR parameter
param of the procedure is echoed by a declaration of a constant paramsave
in the procedure body whose value is defined to be that of the VAR parameter.
Since the constant declarations precede any program statements in the body,
the constant param_save serves to capture the initial value of param. (To make
the conventions described here and below less onerous for the fp-code writer,
our translator includes a preprocessor that transforms more natural pseudocode
into fp-code that follows the conventions.)

The variables (as well as any procedure parameters) may have any type
for which a PVS representation has been specified for the fp-code-to-TAME
translator; this set of “known types” currently includes

— the usual basic types: int, nat, real, bool, and enumerated types;

— structured types: arrays and records; and

— potentially, higher order types: sets and functions.
The possible program statements in an fp-code block will include assignment
statements, procedure calls, if and if_then_else statements, and while state-
ments. The expressions in if, if_then_else, and while statement tests and on
the right hand side of assignment statements can use any operators associated
with a known type. Expressions are not allowed to have side effects.

To facilitate translation into a TAME model, the body of an fp-code block
is organized so that each line serves one of six purposes: 1) declaration of one
or more variables, 2) test and jump, 3) target of a jump (e.g., ENDIF, ENDWHILE,
RETURN), 4) assignment of a value to a variable, 5) call to a procedure, or 6) a
SKIP statement. All non-declaration lines in the body of an fp-code block have
associated labels; the first line after the declarations is a SKIP statement.

Each fp-code block defining a procedure proc will have two associated (pred-
icate) functions that are considered part of the procedure specification:

— proc_args0K, the block precondition, which takes as arguments the argu-
ments to the procedure and returns a boolean, and
— proc_post, the block postcondition, which takes as arguments the arguments
to the procedure plus all param_save constants, and returns a boolean.
Each recursive procedure will in addition have an associated metric function:
— procmetric, which takes as arguments the arguments to the procedure and
returns a natural number.!

! The metric function could actually return a value in any well-founded set, provided
the elements of the set are of a “known type”.



Finally, all fp-code blocks will have annotations associated with each line
of fp-code following the declarations (or equivalently, with each label), where
each annotation represents facts desired to be true about the program state just
before that line is executed. To be appropriate as input for our translator, the
function and predicate symbols used in the annotations must be “known” in the
same sense as the types associated with variables: i.e., a PVS declaration of each
function and predicate used must be present in an appropriate PVS theory.

3.2 Representing formal pseudocode in TAME.

Parameters and variables. For a block of fp-code to be translatable to a valid
TAME specification, any parameters and local variables should have a known
type. The translator turns the value parameters into constants in the TAME
representation of B, declared at the beginning of the TAME representation. Next,
the translator treats each VAR parameter param and each local variable as a
state variable in the TAME representation. The translator then uses each special
constant param_save to specify the initial value of the state variable param in
the state predicate start in the TAME representation.

Labels and assertions. In asserted fp-code, the precondition and postcondi-
tion of a block and the assertions associated with its labels are expressed as
formulas involving state variables and known functions and predicates on the
data types of the variables. As mentioned in Section 2, the verification condi-
tions for the block are a set of state invariant lemmas derived from the block’s
pre- and postconditions, and the lemmas include in their hypotheses a refer-
ence to the current program label. Thus, every state machine derived from a
block includes label as a state variable. The type of the variable label is an
enumerated type.

For each label, it is straightforward to translate the assertion A(L%) asso-
ciated with label L4 into an assertion A(L4) (s) about the current state s: the
translator simply replaces every reference to a state variable v in A(L%) by a
reference to its value v(s) in s. This works also for the block’s postcondition 0.
Because the precondition I of any block refers only to values of the procedure’s
value parameters or initial values of its VAR parameters, the assertion I involves
only constants; no variable references need to be translated. For each assertion
A(L%), the translator defines an invariant Inv_L% on the state s of the form:

I AAT(L3) (s) = A(L3)(s)

where AT(L4%) (s) < label(s) = L. For the last label Ln, the translator also
defines the block specification property Inv_proc (where proc is the block’s pro-
cedure name):

I A AT(Ln) (s) = 0(s),

where 0(s) is the translation of the postcondition 0. For each L% labeling a call
to a procedure P, the translator adds a “call correctness” invariant Inv_L%_P.

Verification conditions. The verification conditions produced by the trans-
lator are the state invariant lemmas associated with the invariants Inv_L< and
Inv_proc and any generated call correctness invariants Inv_LZ_P. The current



translation scheme derives these invariant lemmas from the code and an “asser-
tions specification” that associates assertions with program labels. The lemmas
have the form

FORALL(s:states): reachable(s) = Inv_Li(s) (one for each label L%)
FORALL(s:states): reachable(s) = Inv L: P(s) (if P called at L3)
FORALL(s:states): reachable(s) = Inv_proc(s)

Because it is necessary to verify all invariant lemmas associated with the labels
in while loops simultaneously, the translator also generates invariant lemmas
for each outermost while loop in the fp-code of the form

FORALL(s:states): reachable(s) = Inv_L%;(s) A..A Inv_L4y(s)
where the labels L4; through Ly label all the lines in the loop.

Defining the set of actions. There is just one action in the state machine
representation of a block of fp-code: the action step(new_s). Here, the parame-
ter new_s can be any state. Because the effects of procedure call actions are only
partly specified by a procedure’s pre- and postcondition specification, these ef-
fects must be treated in the model as if they are nondeterministic (even though
they are deterministic). The parameter new_s can be used to specify, in the
precondition of the action step(new_s), the known properties of the new state
resulting from a procedure call at 1abel(s).

Defining the operational semantics of transitions. Every transition in the
state machine representing an fp-code block transforms the current state s into
a next state s’ with appropriate updates to particular state variables. The state
variable 1label is updated according to the flow of control through the block. To
model the control flow effect of a line in the block representing an assignment
statement or procedure call the current value L% of label(s) is updated to
L(%+1). For if_then, if_then_else, and while constructs, the fp-code format
follows the restriction that there will be an IF ... THEN or a WHILE ... DO test
on one line, and, as appropriate to the particular construct, a separate ELSE line,
and separate lines for an ENDIF or ENDWHILE. The WHILE ... DO, ELSE, ENDIF,
and ENDWHILE lines serve as jump targets. The separate ENDIF and ENDWHILE
lines also provide labels associated with assertions that summarize the overall
effect of an if_then, if_then_else, or while. When label(s) corresponds to a
test line, the value of 1label(s’) will be the label of the appropriate target line;
the appropriate choice is made based on the value of the test expression in s.

In addition to label(s), other state variables must be updated on a tran-
sition in two cases: 1) when the fp-code line corresponding to label(s) is an
assignment statement, and 2) when it is a procedure call. In the case of an as-
signment statement, the value of the state variable corresponding to the variable
assigned to is updated according to the value in state s of the expression on the
right hand side of the assignment statement.

The case of a procedure call is more complicated. The effect of a call to
a procedure P in state s (other than to update label(s)) is to update the
state variables passed as VAR parameters to their new values, as captured in
the assertion P_post. Because it is often the case that P_post captures only an



important property of the new values rather than their specific value—e.g., a
procedure to sort list 1is(s) results in 1is(s’) being sorted—the effect of a call
to a procedure P must be captured as if it were partially nondeterministic. As
noted above, this can be done using the state parameter new_s of the transition
action step (new_s). The technique is to use the precondition of step(new_s) to
restrict the values in new_s of the state variables corresponding VAR parameters
of P to values that are acceptable after P executes. These values are then used to
update the corresponding variables in state s. For a nonrecursive procedure P,
the precondition is of the form P_args0K(<0K_args>) => P_post (<post_args>),
where <0OK_args> are the parameters of P and <post_args> are the parameters
of P with an extra argument param_save for each VAR parameter param of P.
When the procedure P is recursive, the precondition is modified to condition
the desired result on the hypothesis that the value of Pmetric is reduced. For
each procedure call to P at a label L4, the translator automatically generates
lemma_L<_P, subject to proof, stating that P_OK holds when label(s) is L% and,
if P is recursive, the value of P-metric in state s is reduced from its initial value.

3.3 Proving formal pseudocode verification conditions in TAME.

The first TAME step in proving any of the invariant lemmas described above
is (auto_induct), which sets up a proof by induction over the reachable states
and discharges the trivial subgoals, which usually include the base case (when s
is the start state). The induction case is always the case of a transition on action
step(new_s). The result of the transition depends on the label in the current
state prestate, i.e., on label (prestate). The next TAME step in the induction
case is (adt_cases label(prestate)), which breaks down the induction case
into cases for each label and discharges the trivial cases automatically.

When the invariant lemma being proved involves a single invariant, a prop-
erty is being shown by induction to hold at a particular label L. Since the
step(new_s) action does not affect the truth of any assertion associated with
label L< unless the action changes the current state prestate into a state with
label L4, the cases for most of the possible labels for prestate are discharged as
trivial, leaving only the cases for labels from which the state can “jump” to label
L. Because of the nature of while programs, there will be at most two nontrivial
cases. For each nontrivial case, one then uses the TAME step (apply_inv_lemma
"L4") where L7 is 1abel (prestate). The case when one is simultaneously prov-
ing the invariants in a loop, the proof proceeds similarly, except that there will
be many more nontrivial cases.

In examples we have done, it has been necessary to formulate some additional
invariant lemmas besides those that the translator can automatically generate.
Proving and using such auxiliary lemmas substitutes for direct strengthening of
the original set of assertions prior to their proof.

4 Traceability: Bridging from Algorithm to Code

The fp-code is used as a bridge between the algorithm specifications, given in ip-
code, and the actual code. The ip-code is converted by hand into fp-code, which is
verified as described in the preceding section, and then used in the development
of the actual code. This section describes how the ip-code is converted into fp-
code and the relationship between the fp-code and the actual code.

8



4.1 Deriving formal pseudocode from informal pseudocode

The first step in deriving fp-code from ip-code is to organize the ip-code into
blocks. (There may be more than one way to do this.) Every block of ip-code
will be represented as a procedure definition in fp-code. If the ip-code is already
organized as a set of procedures, then the blocks may just follow that organiza-
tion. A large block of straight line code or the body of a long ip-code procedure
may be split into multiple functional blocks based on code structure and variable
usage. For each block, associated preconditions and postconditions need to be
provided. In addition, when a block represents a recursive procedure, a metric
function will need to be provided that can be used to measure progress in the re-
cursion. Informal versions of these necessary assertions or functions may already
be present in ip-code procedures. Informal loop invariants for loops may also be
provided. When some necessary assertions and measures are not provided, they
may need to be inferred by examining any assertions supplied with the ip-code
and the ip-code itself.

Once the ip-code is organized into blocks, each block is translated into a
basic fp-code block—i.e., a procedure definition. A combination of dataflow and
parameter analysis of the ip-code is used to determine which of its variables to
treat as value or VAR parameters to the new fp-code procedure and which to treat
as constants or local variables. For example, if the ip-code block is a procedure,
any parameters not modified (by an assignment or procedure call) in its body
are treated as value parameters in the fp-code and any variables used as return
values are treated as VAR parameters. If the ip-code block is not a procedure,
any variables live at the end of the block are represented as VAR parameters in
the fp-code procedure. The initial segment of variable declarations in the body
of the fp-code procedure is used to represent those variables whose values are
modified in the ip-code block but that are local to the block. The ip-code block
may not contain declarations of all the variables used in the block. For each
variable to be treated as a constant or a local variable, we add either a constant
(uninterpreted) or variable declaration as appropriate.

The ip-code may also be missing the definitions of datatypes used in the
algorithms and it may assume the existence of operators on those datatypes. It
is necessary in the fp-code to provide fp-code representations of those datatypes
and fp-code that implements the operators. Once formal versions—that is, fp-
code representations—of the ip-code variables, types, and expressions have been
decided on, it is possible to represent the (informal) versions of the preconditions
and postconditions, metrics, and loop invariants (if given) as a formal part of
the fp-code specification. If the ip-code metric is not expressible in terms of the
procedure parameters, then a new parameter must be added to the fp-code to
capture the metric. This may require the postcondition to be modified to take
into account the new metric parameter.

Because the fp-code representation of a block needs to be fully asserted (i.e.,
assertions associated with every line of code), intermediate assertions need to
be provided. In our work so far, we have done these by hand. As mentioned in
Section 2, a mechanical verification condition generator could ease this process.



4.2 Relating formal pseudocode to actual code

The relationship of the fp-code to the actual code is established by inspection.
Every construct in the fp-code language has a corresponding language construct
in programming languages such as C and Ruby. Thus, there will be structural
similarities between the fp-code and the actual code that make the correspon-
dence more transparent. In addition, the labels of the fp-code can be mapped to
line numbers in the actual code to document the correspondence. If the actual
code uses constructs not included in the fp-code language (e.g., a FOR loop),
then an offline argument will need to be made that any code written with those
constructs is semantically equivalent to the corresponding fragments of fp-code.

5 Examples

5.1 TAME translation/verification of asserted formal pseudocode

To illustrate how our translation scheme transforms blocks of fp-code into TAME
specifications, we will provide an fp-code specification of the well known algo-
rithm quicksort, which is defined in terms of a recursive procedure (which we
also call quicksort) and a procedure partition.

Figures 1 and 2 show fp-code specifications for partition and quicksort,
respectively. The TAME state machine representation for partition is shown
in Figure 3, and that for quicksort is shown in Figure 4. The fp-code for

PROC partition(VAR f:[int->nat], L:int, Hint, VAR P:int)
f_save: [int->nat] = f;
P_save: int = P;
VAR I o, hi: int;

VAR v: nat;
LO: SKIP;
L1: lo :=L;
L2: hi := H,

L3: v :=f(lo);
L4: VH LE (hi > 1o0) DO

L5: WH LE (f(hi) >=v & hi >10) DO
L6: hi :=hi - 1;
L7: ENDVWHI LE;
L8: IF (hi > lo) THEN
L9: f:=f WTH[(lo) :=f(hi), (hi) :=v];
L10: WH LE (f(lo) <= v & hi >10) DO
L11: lo:=1o0o + 1;
L12: ENDWHI LE;
L13: f:=f WTH[(hi) :=f(lo), (lo) :=V];
L14: ENDI F;
L15: ENDWH LE;
L16: P :=lo;
L17: RETURN,
ENDPRCC;

partition_argsOK: L <= H
partition_post: pernutation(f,f_save,L,H & partitions(P,f,L, H

Fig. 1. Formal pseudocode for partition.

10



PRCC qui cksort (VAR f:[int -> nat], L:int, Hint)
f_save: [int -> nat] = f;

VAR P: int;
LO:  SKIP;
L1: IF (H> L) THEN
L2: EXECUTE(partition(VARf, L, H VAR P));
L3: EXECUTE( qui cksort (VAR f, L, P - 1));
L4: EXECUTE( qui cksort (VAR f, P + 1, H));
L5: ENDIF;
L6: RETURN,

ENDPROC;

qui cksort_argsOK: L <= H
qui cksort_post: sorted(f) & pernmutation(f,f_save)
qui cksort_netric: H- L

Fig. 2. Formal pseudocode for quicksort.

quicksort is very compact, since it consists mainly of procedure calls to parti-
tion and to itself. As described in Section 3.2, the translator makes significant
use of the definitions of the predicates partition_args0OK and partition post
and of the predicates quicksort_args0K, and quicksort_post, and the metric
quicksortmetric in formulating the preconditions in enabled_specific for
the program steps corresponding to the procedure calls of quicksort.

5.2 Translation of an algorithm to formal pseudocode

To illustrate the translation of an informally specified algorithm into formal
pseudocode, we present both pseudocode specifications for an algorithm to unify
two literals that returns two values: 1) a boolean that indicates whether the
literals are unifiable, and 2) if they are unifiable, a substitution list that if applied
to the literals will make them equivalent. Figure 5 shows the ip-code specification
for Unify2Lits. The corresponding fp-code specification is shown in Figure 6.
Note that the fp-code has an additional parameter n, which is used in specifying
the metric and that the postcondition for the fp-code also refers to this variable.

6 Discussion

On our translation technique. Our translation method is designed not to
require an extensive symbol table. Thus, for example, we use VAR tags on VAR
arguments to procedure calls as a hint to the translator. The translator must,
however, coordinate translation of a set of related procedures in order to have
access to the definitions of P_argsOK, P_post, and Pmetric for each procedure
P external to, but called in, the one currently being translated. Our translator
relies only on a correct syntax; type correctness of the generated state machine
definition is established using the PVS type checker.

Currently, assertions in asserted fp-code must be specified as properties asso-
ciated with labels rather than as properties interleaved with lines of fp-code. As
noted in Section 2, we may add a capability to generate the needed properties
from a minimal set such as input, output, and loop invariant assertions.

11



partition_decls: THEORY

BEG N
code_proof _lib: LIBRARY = "../code_proof _|ib"
| MPORTI NG code_proof _|i b@orting_thy
LABEL: TYPE =
{LO, L1, L2, L3, L4, L5,L6,L7,L8,L9,L10,L11,L12,L13,L14,L15,L16,L17};
L, H int;

f_save: [int->nat];
P_save: int;

partition_argsOK(L,Hint,f:[int->nat],P:int):bool = (L <= H);

partition_post(L,Hint, f_in,f_out:[int->nat], P_in,P_out:int):bool =
pernmutation(f_out,f_in, L, H & partitions(P_out,f_out,L,H);

const_facts: AXI OM TRUE;

states: TYPE =
[# label: LABEL, f: [int -> nat], P: int, v: nat, lo: int, hi: int #];

f(i:int,s:states):nat = f(s)(i);

AT(l: LABEL, s:states):bool = (label(s) =1);

actions: DATATYPE BEG N step(new_s:states): step? END actions;
OKst at e?(s:states): bool = TRUE;

enabl ed_general (a: actions, s:states): bool = TRUE;

enabl ed_specific(a:actions, s:states): bool =
CASES a OF step(new_s): NOT(label (s)) = L17 ENDCASES;

trans(a:actions, s:states): states =
CASES a OF
step(new_s):
CASES | abel (s) OF

LO: s WTH [l abel := L1],
L1: s WTH [label := L2, lo := 1],
L2: s WTH [label := L3, hi :=H,
L3: s WTH [label := L4, v :=f(lo(s),s)],
L4: IF (hi(s) > 10o(s)) THENsWTH[IabeI 1= L5]
ELSE s WTH [l abel := L15] ENDIF,
L5: IF (f(hi(s),s) >= v(s) & hi(s) >1o(s)) THEN s WTH [| abel := L6]
ELSE s WTH [l abel := L7] ENDIF,
L6: s WTH [label := L5, hi := hi(s) - 1],
L7: s WTH [l abel := L8],
L8 IF (hi(s) >1o(s)) THEN s WTH [|abel := L9]
ELSE s WTH [ | abel := Ll4] ENDI F,
L9: s WTH [label := L10, f := f(s) WTH[(Io(s)) = f(hi(s),s),
(hi(s)) :=v(s)]I,
L10: IF (f(lo(s),s) <= v(s) & hi(s) > lo(s)) THEN
s WTH[IabeI 1= L11]
ELSE s WTH [ abel :: L12] ENDIF,
L11: s WTH [label := L10, lo :=lo(s) + 1],
L12: s WTH [l abel := L13],
L13: s WTH [label :=L14, f :=f(s) WTH [(hi(s)) := f(lo(s),s),
(lo(s)) = v(s)]],
L14: s WTH [l abel := L4],
L15: s WTH [l abel := L16],
L16: s WTH [label :=L17, P :=1lo(s)],
L17: s
ENDCASES
ENDCASES;
OKtrans?(a:actions, s:states): bool = TRUE

enabl ed(a: actions, s:states): bool =
enabl ed_general (a,s) & enabled_specific(a,s) &
OKstate?(trans(a,s)) & OKtrans?(a,s);

start(s:states): bool = s =s WTH [label := L0, f :=f_save, P := P_save];
I MPORTI NG tined_auto_l i b@machi ne[ states, actions, enabled, trans, start]
END partition_decls

Fig. 3. TAME representation of partition fp-code.

12



qui cksort _decl s: THEORY
BEG N
code_proof _|ib: LIBRARY = "../code_proof_lib"

| MPORTI NG code_proof _|i b@orting_thy

L, H: int;

f_save : [int -> nat];

qui cksort _argsOK(f:[int->nat],L,Hint):bool = (L <= H);

qui cksort _post (L, Hint,f_out,f_in:[int->nat]):bool =
sorted(f_out,L,H & permutation(f_out,f_in,L,H &
eq_outside(L, H f_out,f_in);

qui cksort_netric(L,Hint,f:[int->nat]):nat =
I F qui cksort_argsOK(f,L,H THEN (H - L) ELSE O ENDIF;

const_facts: AXI OM TRUE;

states: TYPE = [# label: LABEL, f: [int -> nat], P: int #];
actions: DATATYPE BEG N step(new_s:states): step? END actions;
f(i:int,s:states):nat = f(s)(i);

AT(|:LABEL, s:states):bool = (label(s) =1);
OKstate?(s:states): bool = TRUE;

enabl ed_general (a: actions, s:states): bool = TRUE
enabl ed_specific(a:actions, s:states): bool =
CASES a OF

step(new_s):
CASES | abel (s) OF
LO: TRUE,
L1: TRUE,
L2: (L <= H
=> (partitions(P(new.s),f(news),L, H &
permutation(f(new.s),f(s),L H),
L3: (quicksort_metric(L,P(s)-1,f(s)) < quicksort_metric(L,H, f_save)
=> (qui cksort_argsCK(f(s),L,P(s)-1) =>
qui cksort_post (L, P(s)-1,f(new.s),f(s))))
& (NOT(qui cksort_argsOK(f(s),L,P(s)-1)) => new.s = s),
L4: (quicksort_metric(P(s)+1, H f(s)) < quicksort_metric(L,H, f_save))
=> (qui cksort_argsCK(f(s), P(s)+1, H =>
qui cksort_post (P(s)+1, H f(new_s),f(s)))
& (NOT(qui cksort_argsOK(f(s),P(s)+1,H) => new.s = s),
L5: TRUE,

L6: FALSE
ENDCASES
ENDCASES;
trans(a:actions, s:states): states =
CASES a OF
step(new_s):
CASES | abel (s) OF

LO: s WTH [l abel := L1],
L1: IF (H>1L) THEN s WTH [l abel := L2]
ELSE s WTH [l abel := L5] ENDIF,
L2: s WTH [label := L3, f :=f(news), P := P(news)],
L3: s WTH [l abel := L4, f := f(new.s)],
L4: s WTH [label := L5, f :=f(news)],
L5: s WTH [l abel := L6],
L6: s
ENDCASES
ENDCASES;
OKtrans?(a: actions, s:states): bool = TRUE;

enabl ed(a: actions, s:states): bool =
enabl ed_general (a,s) & enabl ed_specific(a,s) &
OKstate?(trans(a,s)) & OKtrans?(a,s);

start(s:states): bool =s =s WTH [label := L0, f := f_save ];
I MPORTI NG timed_auto_| i b@machi ne[ states, actions, enabled, trans, start]
END qui cksort_decl s

Fig. 4. TAME representation of quicksort fp-code.

13



(unifiable: bool, sigma: subst_list) Unify2Lits(l1,12:1iterals):

if (NOT(sign(l1) = sign(l2)) or NOT(pred(l1) = pred(l2)))
then unifiable:= fal se
el se mismatch := fal se
i=
while (i <= arity(l1l) & not(m smatch))
if (arg(i,l1) notequal arg(i,l2))
then msmatch := true
elsei:=i+1
if msmtch
then u_result,s_result := UnifyTerns(arg(i,l1),arg(i,l2))
if uresult = false
then wunifiable:= false
else u_result2, s_result2 := Unify2Lits(l1l s_result, 12 s_result)
if u_result2 = fal se
then unifiable:=fal se
el se unifiable:= true
sigma := s_result s_result2
el se unifiable:= true
sigma: = sigma_id
Unify2Lits_argsOK: 11, 12 are literals

Uni fy2Lits_post: ((NOT(EXI STS(s:subst_list): substitution(l1,s) = substitution(l2,s)))
<=> (unifiable = fal se))
AND ((EXI STS(s:subst_list): substitution(l1,s) = substitution(l2,s))
<=> ((unifiable = true) AND (substitution(l1,sigm) = substitution(l2,sigm))))

Uni fy2Lits_metric: each tine the recursive call is nade |1l.arity -i is smaller

Fig. 5. Informal pseudocode for Unify2Lits.

PROC Uni fy2Lits(VAR unifiabl e:bool, VAR sigma:subst_list, ninat, I1,12:1iteral):
uni fi abl e_save: bool = unifiable;

si gma_save: subst_list = sigm;

VAR u_result, u_result2: bool;

VAR s_result, s_result2: subst_list;

VAR | 1_signa, |2_sigma: literal;

VAR i: nat;
LO: SKIP;
L1: IF (NOT(l1.sign = 12.sign) OR NOT(|1.pred = |2.pred)) THEN
L2: uni fiabl e: = FALSE;
L3: ELSE mismatch := FALSE;
L4 i =n;
L5: WHI LE ((i <= l1.arity) AND NOT(mi smatch)) DO
L6: IF NOT(l 1. arg[i] =12.arg[i]) THEN
L7: m smatch : = TRUE;
L8: ELSE i:=i+1;
L9: ENDI F;
L10: ENDWHI LE;
L11: I'F m smatch THEN
L12: Uni fyTerms(VAR u_result, VAR s_result, 1. arg[i],l2.arg[i]);
L13: IF u_result = FALSE THEN
L14: uni fi abl e: = FALSE;
L15: ELSE IF (i < ll.arity) THEN
L16: EXECUTE( appl y_sub(VAR | 1_sigma, | 1,s_result));
L17: EXECUTE( appl y_sub(VAR | 2_sigma, |12, s_result));
L18: EXECUTE( Uni fy2Lits(VAR u_result2, VAR s_result2, i+1,
11_sigma, |2_sigm));
L19: IF u_result2 = FALSE THEN
L20: uni fiabl e: = FALSE;
L21: ELSE uni fi abl e: = TRUE;
L22: EXECUTE( conpose( VAR signma, s_result, s_result2));
L23: ENDI F;
L24: ELSE uni fi abl e: = TRUE;
L25: sigma:= s_result;
L26; ENDI F;
L27: ENDI F;
L28: ELSE unifiabl e: = TRUE;
L29: si gma: = sigma_id;
L30: ENDI F;
L31: ENDIF;
L32: RETURN;
ENDPRCC;

Unify2Lits_argsOK: n <= |1l.arity
Uni fy2Lits_post: ((NOT(EXI STS(s:subst_list): substitution(l1,s) = substitution(l2,s)))

<=> (unifiable = FALSE))

AND ((EXI STS(s:subst_list): substitution(l1,s) = substitution(l2,s))
<=> ((unifiable = TRUE) AND
(FORALL(i:int): (n<=i AND i<=l1.arity)
=> (substitution(l1.arg[i],sigm) = substitution(l2.arg[i],sigma)))))

Uni fy2Lits_nmetric: Il.arity - n

Fig. 6. Formal pseudocode for Unify2Lits.

14



On our fp-code verification technique. So far, our verification technique can
establish partial correctness. Although it includes proving invariants capturing
the permissibility of making procedure calls, it does not guarantee that either
procedure calls or while loops will terminate. Adding support for proving total
correctness is a goal for the future.

Besides being based on proving invariants of a state machine representation
of fp-code, our technique differs from standard techniques used with Floyd-Hoare
style verification in other ways. For example, in place of “logical variables”, e.g.
to capture initial values, we use special new constants in the program. Also,
we do not need to generate verification conditions as in Floyd or Hoare logic.
Rather, the analogs of these verification conditions arise naturally as subgoals
in state invariant proofs.

As with any verification technique for programs involving complex data types,
to be complete, properties of these data types and their operators and predicates
must be formulated in PVS theories and proved in PVS, so that they can be used
in proofs of verification conditions. We have done this for a theory of sorting of
functions of type [int->nat].

Note that confidence in our technique will require proving that our fp-code-
to-TAME translation scheme generates a TAME representation such that the
properties proved of the TAME model also hold for the fp-code. Verifying the
translator implementation would provide even higher confidence, though this is
a goal for the more distant future.

7 Conclusions and Future Work

We have presented a verification scheme that relies on formal pseudocode as
a bridge between algorithm specifications and implementations. We have also
described a method of verifying fp-code using the TAME interface to PVS. This
approach falls short of full program verification, but provides evidence of the
correctness of the algorithm and its implementation.

Unify2Lits is part of a set of algorithms to perform unification and resolu-
tion. We plan to write fp-code specifications for all of these algorithms, verify
them, and show the correspondence of the fp-code to C and Ruby code imple-
menting the algorithms. This effort will include development of supporting PVS
theories for expressions and substitutions, and enhancement of TAME’s proof
support with strategies specialized for algorithm verification.

Acknowledgements

We thank Vicky Weissman who provided the first version of Unify2Lits ip-code,
and our colleague Tom Macklin who is translating fp-code into executable code.
We also acknowledge Bill Harrison who is implementing a more robust version
of the pseudocode-to-TAME translator.

References

1. Sten Agerholm. Mechanizing program verification in HOL. In Proc. 1991 Interna-
tional Workshop on the HOL Theorem Proving System and its Applications, pages
208 222. IEEE Computer Society Press, 1992.

15



10.

11.

12.

13.

14.

15.

16.

17.

. Myla Archer. TAME: Using PVS strategies for special-purpose theorem proving.

Annals of Math. and Artif. Intel., 29(1-4):139-181, 2000. Published Feb., 2001.
Myla Archer, Constance Heitmeyer, and Elvinia Riccobene. Proving invariants of
I/0 automata with TAME. Automated Software Engineering, 9(3):201-232, 2002.
A. Azurat and 1.S.W.B. Prasetya. A survey on embedding programming logics in
a theorem prover. Tech. Rept. UU-CS-2002-007, Comp. Sci. Dept., Utrecht Univ.
Janet Barnes, Rod Chapman, Randy Johnson, James Widmaier, David Cooper,
and Bill Everett. Engineering the tokeneer enclave protection software. In Proceed-
ings of the First IEEE International Symposium on Secure Software Engineering
(ISSSE’06), March 2006.

R. S. Boyer and J Strother Moore. A fast string searching algorithm. Communi-
cations of the ACM, 20(10):762-772, 1977.

R. S. Boyer and J Strother Moore. A verification condition generator for FOR-
TRAN. In R. S. Boyer and J Strother Moore, editors, The Correctness Problem
in Computer Science. Academic Press, 1981.

M. J. C. Gordon. Mechanizing programming logics in higher order logic. In
G. Birtwistle and P. A. Subrahmanyam, editors, Current Trends in Hardware Ver-
ification and Automated Theorem Proving, pages 387 439. Springer-Verlag, 19809.
M. J. C. Gordon and T.F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher-Order Logic. Cambridge University Press, 1993.
P. V. Homeier and D. F. Martin. Trustworthy tools for trustworthy programs: A
verified verification condition generator. In Higher Order Logic Theorem Proving
and Its Appl.s, Lect. Notes in Comp. Sci. vol. 859, pages 269—284. Springer, 1994.
Peter V. Homeier. A User’s Guide to Proving Programs Correct with the Sunrise
Verification System. http://www.cis.upenn.edu/ hol/sunrise/guide.pdf, 2005.
Marieke Huisman. Java Program Verification in Higher-Order Logic with PVS and
Isabelle. PhD thesis, Univ. of Nijmegen, The Netherlands, 2000.

B. W. Kernighan and D. M. Ritchie. The C' Programming Language, Second Edi-
tion. Prentice-Hall, Englewood Cliffs, New Jersey, 1988.

L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lect. Notes in
Comp. Sci. Springer-Verlag, 1994.

N. Shankar, S. Owre, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS Prover
Guide, Vers. 2.4. Tech. R., Comp. Sci. Lab., SRI Intl., Menlo Park, CA, Nov., 2001.
J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International,
1992.

D. Thomas, C. Fowler, and A. Hunt. Programming Ruby: the Pragmatic Program-
mer’s Guide, 2nd Ed. The Pragmatic Bookshelf, Raleigh, NC, USA, 2005.

16



